Biosynthesis of Vitamin B₁₂: Structural Studies on Precorrin-8x, an Octamethylated Intermediate and the Structure of its Stable Tautomer

Denis Thibaut, ^a Fumiyuki Kiuchi, ^b Laurent Debussche, ^a Francis Blanche, * ^a Masahito Kodera, ^b Finian J. Leeper^b and Alan R. Battersby * ^b

^a Department Analyse, Centre de Recherche de Vitry-Alfortville, Rhône-Poulenc Rorer, 13 Quai Jules Guesde, BP14, F-94403 Vitry-sur-Seine Cedex, France

^b University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

The structure of precorrin-8x, the octamethylated B₁₂-intermediate which follows precorrin-6y in *Pseudomonas denitrificans*, is largely determined by ¹³C-labelling and NMR spectroscopy and the structure of its most stable tautomer is established.

The biosynthesis of vitamin B_{12} from uro'gen III 1 goes by way of cobyrinic acid 6 in *Propionibacterium shermanii* and probably *via* hydrogenobyrinic acid 7 in *Pseudomonas denitrificans*; the former is the Co^{III}-derivative of the latter. Formation of 6 and 7 from 1 involves the stepwise delivery of eight methyl groups from S-adenosylmethionine (SAM) onto carbon centres of 1. The intermediates in this process are called precorrins and are distinguished by adding to the name a number corresponding to the number of C-methyl groups introduced from SAM.¹ Thus, the trimethylated interme,CO₂H

CO₂H

CO₂H

CO2H

ŃН ΗŇ

ĊO₂H

NH HN

1 Uro'gen III

CO₂H

le Me

Ŵө

-CO₂H

Me

CO₂H

ĊO₂H

HO₂C

HO₂C

HO₂C

HO₂C

HO₂C

HO₂C

Me

Мө

Me

See footnote ‡

Precorrin-6y $= \mathbf{o} = {}^{12}C, R = H$ 4a: ٠ $= {}^{12}C, o = \phi = {}^{13}C, R = H$ $= o = {}^{13}C, \phi = {}^{12}C, R = H$ $= \phi = o = {}^{12}C, R = Me$ 4b: 4c:

ÇO₂H

ИН НИ

H

Precorrin-3

2b; $\bullet = {}^{12}C$, $\bullet = {}^{13}C$

CO₂H

Мө

CO₂H

-Me

O₂H

2a; $\bullet = \mathbf{\Phi} = {}^{12}\mathbf{C}$

2c; ● = ¹³C, ●

со₂н

HO₂C

HO₂C

HO₂C-

HO₂C

Мө

Me

Мө

Me

Мө

со₂н

= ¹²C

CO₂H

CO₂H

CO2H

8c; $\bullet = \mathbf{0} = {}^{13}\mathbf{C}, \ \bullet = {}^{12}\mathbf{C}$

diate²⁻⁴ 2a is precorrin-3. Recently, the isolation of a hexamethylated intermediate,³ precorrin- $6x^{\dagger}$ and proof^{5.6} that its octamethyl ester has structure **3d** caused a major change in the direction of research on the biosynthesis of vitamin B_{12} . Then precorrin-6y,[†] which is the intermediate immediately following precorrin-6x, was isolated7 and the structure of its ester 4d was determined.8 In addition, the reductase enzyme which saturates the C-18-C-19 double bond

in 3a[‡] to give 4a[‡] has been found to be coded by the *cobK* gene in *P. denitrificans*⁷ which has been overexpressed and the reductase isolated;⁷ it is specifically dependent on NADPH (reduced nicotinamide adenine dinucleotide phosphate). Finally, the site to which the hydride equivalent is delivered from NADPH by the reductase has been shown⁹ to be C-19 of 3a and the complementary knowledge has been gained¹⁰ that the reductase specifically transfers H_R from C-4 of NADPH.

See footnote ‡

[†] Occasionally there are sets of intermediates at the same level of methylation (e.g. precorrin-6). So the letters x, y etc. will eventually be replaced by A, B, C when the size of the set and the sequence within it are established.

[‡] The double bonds of these octa-acids are shown in the same positions as proven for the corresponding esters but it cannot be excluded that the octa-acids are close tautomers of 3a and 4a.

8b					8c			
δ	Coupling, J/Hz	Assign- ment	Chemical shift of coupled protons δ_H (assignment)	δ	Coupling, J/Hz	Assign- ment	Chemical shift of coupled protons δ_H (assignment)	
160.7	d, 5	C-6	3.11 (7-CH ₂), 2.12 (5-Me), 1.38 (7-Me)	192.9	d, 53	C-4	а	
133.8	S	C-13	4.15 (H-15), 3.70, 2.91 (13 ¹ -CH ₂), 2.15 (12-Me)	183.9	d, 43	C-14	1.65 (15-Me), 2.91, 3.70 (13 ¹ -CH ₂)	
99.0	d, 5	C-8	3.11 (7-CH ₂), 2.4–2.6 (8-CH ₂ CH ₂), 1.38 (7-Me)	182.0	d, 45	C-16	1.22 (17-Me), 4.39 (H-19)	
81.4	d, 39	C-19	1.57 (1-Me), 4.38 (H-19)	175.8	dd, 49, 9	C-9	2.47, tentatively 2.22 (8 ¹ -CH ₂)	
79.0	t, 39	C-1	2.97 (2-CH _B), 1.57 (1-Me), 1.11 (2-Me)	119.7	br t, <i>ca</i> . 45	C-5	a	
73.8	d, 32	C-11	2.15 (12-Me), 1.60 (11-Me), 3.61-3.65 (H-10)	37.4	dt, 31, 44	C-15	а	
58.3	s	C-3	$3.51(2-CH_A), 1.11(2-Me)$	33.5	d, 49	C-10	1.60 (11-Me)	
57.5	d, 35	C-17	2.73 (18-CH ₂), 1.22 (17-Me)	26.4	S	11-Me	1.60 (11-Me)	
26.4	d, 32	11-Me	1.60 (11-Me)	19.4	S	17-Me		
19.4	d, 35	17-Me	1.22 (17-Me)	19.2	s	1-Me	See assignments for 8h	
19.2	d, 39	1-Me	1.57 (1-Me)	18.9	d, 31	15-Me	See assignments for 80	
18.9	s	15-Me	4.15 (H-15), 1.65 (15-Me)	18.4	d, 41	5-Me	J	
18.4	s	5-Me	2.13 (5-Me)					

Table 1 ¹³C NMR data for stable isomer of precorrin-8x as labelled forms 8b and 8c dissolved in water pH ca. 2.7

^{*a*} Correlations for these centres are not available because H-3, H-10 and H-15 exchanged for ²H in the D_2O solvent; correlations to C-5 and to 5-Me in the ¹H dimension were obscured by MeCN, the internal standard.

Major advances in the molecular biology of B_{12} -biosynthesis¹¹ have allowed isolation of the enzyme which converts precorrin-69 **4a** into the next biosynthetic intermediate, precorrin-8x. This enzyme, coded by the *cobL* gene, introduces the last two *C*-methyl groups and effects decarboxylation of the C-12 acetate residue. This communication outlines our studies on the structure of the enzymic product precorrin-8x.† Precorrin-8x heptamethyl ester, though briefly handleable for mass spectrometry,¹² underwent oxidative lactone formation during attempted purification. Accordingly, all the labelling and spectroscopic studies have been carried out on the hepta-acid with 0.3–0.5 mg being obtained in each labelling experiment.

It must surely be true that the *cobL* enzyme produces one substance, precorrin-8x, for this is the nature of enzymic processes. But during isolation, it changes into a mixture of at least five closely related forms which by HPLC¹² in an acidic solvent yielded five fractions A to E. Fractions A and B were homogeneous, the former being stable whereas the latter in water (pH 2.7 due to residual acid from HPLC) changed to A during 3–5 days at *ca*. 18 °C. Fractions C–E also changed to A under these conditions though more slowly. This phenomenon will be explained after discussing the studies which support structure **8a** for the stable isomer A of precorrin-8x.

The unlabelled form 8a of this stable isomer A showed m/z881.4133 by fast atom bombardment mass spectrometry corresponding to monoprotonated $C_{45}H_{60}N_4O_{14}$ which requires 881.4184. ¹³C-Labelled precorrin-3 2b prepared biosynthetically³ from 5-amino[4-13C]laevulinic acid, [4-¹³C]ALA, was converted enzymically¹² by way of the hexamethylated systems 3b and 4b into precorrin-8x using [methyl-13C]SAM as the source of the last five C-methyl groups. Form A 8b was isolated and studied using (a) 1D ¹³C MMR, (b) 1D ¹H NMR, (c) 2D ¹H-¹³C one-bond correlation, (d) 2D $^{1}H^{-13}C$ two-three bond correlation and (e) $^{1}H^{-1}H$ COSY. Table 1 collects the information from (a), (c) and (d)and the results from (b) and (e), though not detailed here, interlock with those in Table 1. Similarly, [5-13C]ALA and [methyl-13C]SAM were used for enzymic production12 of precorrin-8x via 2c, 3c and 4c and the stable form A 8c was isolated for study by NMR using methods (a), (c) and (d)above; Table 1 collects the results.

The NMR assignments in Table 1 were made using the same analysis reported^{5.8} for precorrin-6x **3** and precorrin-6y **4**; it will be given in our full paper. All the data are self-consistent and lead to structure **8a** for the stable isomer of precorrin-8x.

This structure, apart from the stereochemistry at C-3 and C-15, also depends on the knowledge that precorrin-8x is enzymically converted into 7, of firmly established structure, and is formed enzymically from $2a \ via \ 3a$ and 4a.

Attention now focussed on which of the original fractions contained the true biosynthetic intermediate, precorrin-8x. Fraction A, **8a** was not converted enzymically into 7 whereas B gave 7 rapidly (*ca.* 100 nmol h⁻¹ mg⁻¹ of pure *cobH* enzyme¹²). Under the same conditions, fractions C to E yielded 7 much more slowly (C, 12; D, 8; E, 18% of the rate for B). Fraction B is thus precorrin-8x and it was found to be stable at room temperature in 0.1 mol dm⁻³ aqueous NaOH longer than was needed for NMR spectroscopy; fractions C–E reverted to B under these conditions (yield $\ge 50\%$).

It was essential to know whether the carbon attached to C-12 of precorrin-8x is a methylene or a methyl group; see part structures $9 \rightarrow 10 \rightarrow 11$ for the probable mechanism of the decarboxylation process. Accordingly, [2,3-13C₂]ALA was converted into precorrin-3 and precorrin-8x was enzymically derived¹² from it as before. Fraction B was studied under the foregoing alkaline conditions by NMR using 1D ¹³C and ¹H spectra and 2D ¹H-¹³C two-three bond correlation spectroscopy. The resultant data in Table 2 show that precorrin-8x carries a methyl group at C-12, confirmed by off-resonance spectrum, and C-12 itself is an sp² centre as in structure 5e. The eight ¹³C-labels in the propionate side-chains yielded useful corroborating evidence by the ¹H-¹³C correlation (Table 2). The ¹H NMR spectrum showed two 1 H signals not split by directly attached ¹³C and of chemical shift appropriate for H-3 and H-8 (8 3.11 and 2.80). That C-8 is sp³ hybridised in precorrin-8x is supported by a 13C-spectrum of the sample from [4-13C]ALA and [methyl-13C]SAM taken quickly in the original mildly acidic solvent before appreciable change from form B to the stable A form 8b had occurred. This spectrum showed almost no signal around δ 99 where C-8 of **8b** occurs and this signal only grew as the change to 8b took place.

The ¹H NMR spectrum also showed two methyl groups on double bonds, one unlabelled (δ 1.85, 5-Me) and one enriched in ¹³C (δ 1.84, 12-Me). The other six methyl groups were all on saturated carbons (δ < 1.5) and one of them (δ 1.42) appeared as a doublet, shown to be coupled to a quartet at δ 3.71. This is in agreement with C-15 carrying a hydrogen as in the stable tautomer **8b**. Also evident in the ¹H NMR spectrum was a pair of coupled doublets at δ 2.87 and 3.15 (*J* 19 Hz), the latter showing a strong correlation with C-12; thus these signals must be due to a CH₂ at position 10.

Table 2 ¹³C NMR data for precorrin-8x labelled form 5e dissolved in $0.1 \text{ mol } dm^{-3}$ aqueous NaOH

δ	Coupling, J/Hz	Assign- ment	Chemical shift of coupled protons δ_H (assignment)
166.7	d, 45	C-12	3.15 (H-10), 1.84 (12-Me), 1.11 (11-Me)
51.0	d, 34	C-2	3.11 (H-3), 1.28 (1-Me), 0.90 (2-Me)
47.2	d, 33	$7-CH_2$	2.42, 1.95 (7-CH ₂), 1.22 (7-Me)
45.0	d, 33	C-7 -	1.22 (7-Me)
42.8	d, 34	$2-CH_2$	0.90 (2-Me)
42.5	d, 37	$18-CH_2$	4.33 (H-19), 3.63 (18-CH ₂)
41.1	d, 37	C-18	
38.5	d, 33]	(17 ² -CH ₂	
37.5	d, 33 }	$\{13^2 - CH_2^-\}$	
37.2	d, 34	8 ² -CH ₂	
37.1	d, 35	3 ² -CH ₂	3.11 (H-3)
33.6	d, 33	171-CH ₂	
24.8	d, 34]	∫13 ¹ -CH ₂	
24.1	d, 33∫	}8¹-CH₂	
22.6	d, 35	31-CH ₂	3.11 (H-3)
11.2	d, 45	12-Me	1.84 (12-Me)

The foregoing evidence is best accommodated by structure **5a** for the biosynthetic intermediate, precorrin-8x, a structure which can be expected to change to **8a** so gaining stabilisation¹³ from the extended amidine system of rings A and B. There are other tautomers possible for the two separated chromophores in addition to **5a** and **8a** and epimerisation could occur at C-3, C-8 and C-15. These changes can explain the formation noted above of several structural forms all eventually dropping into the thermodynamic well represented by structure **8a**. All the main features of structure **5a** are secure but the final details, *e.g.* some points of stereochemistry, will require a further major effort in the future. It should be noted that precorrin-8x has all the *C*-methyl groups of **6**, **7** and vitamin B₁₂ attached to the macrocycle and only

rearrangement of the 11-Me to position 12 is necessary to yield hydrogenobyrinic acid 7, a rearrangement catalysed by the enzyme encoded by cobH.¹²

Grateful acknowledgement is made to J. Lunel, P. E. Bost and J.-C. Brunie for their interest and help, also to the SERC and to Rhône-Poulenc Rorer for financial support.

Received, 16th April 1992; Com. 2/01986H

References

- 1 H. C. Uzar, A. R. Battersby, T. A. Carpenter and F. J. Leeper, J. Chem. Soc., Perkin Trans. 1, 1987, 1689.
- 2 For reviews of earlier literature, see F. J. Leeper, *Nat. Prod. Rep.*, 1989, **6**, 171 and references cited therein.
- 3 D. Thibaut, L. Debussche and F. Blanche, Proc. Natl. Acad. Sci. USA, 1990, 87, 8795.
- 4 M. J. Warren, C. A. Roessner, S.-I. Ozaki, N. J. Stolowich, P. J. Santander and A. I. Scott, *Biochemistry*, 1992, **31**, 603.
- 5 D. Thibaut, F. Blanche, L. Debussche, F. J. Leeper and A. R. Battersby, Proc. Natl. Acad. Sci. USA, 1990, 87, 8800.
- 6 F. Blanche, M. Kodera, M. Couder, F. J. Leeper, D. Thibaut and A. R. Battersby, J. Chem. Soc., Chem. Commun., 1992, 138.
- 7 F. Blanche, D. Thibaut, A. Famechon, L. Debussche, B. Cameron and J. Crouzet, J. Bacteriol., 1992, 174, 1036.
- 8 D. Thibaut, F. Kiuchi, L. Debussche, F. J. Leeper, F. Blanche and A. R. Battersby, J. Chem. Soc., Chem. Commun., 1992, 139.
- 9 G. W. Weaver, F. J. Leeper, A. R. Battersby, F. Blanche, D. Thibaut and L. Debussche. J. Chem. Soc., Chem. Commun., 1991, 976.
- 10 F. Kiuchi, D. Thibaut, L. Debussche, F. J. Leeper, F. Blanche and A. R. Battersby, J. Chem. Soc., Chem. Commun., 1992, 306.
- 11 F. Blanche, A. Famechon, D. Thibaut, L. Debussche, B. Cameron and J. Crouzet, J. Bacteriol., 1992, 174, 1050.
- 12 D. Thibaut, M. Couder, A. Famechon, L. Debussche, B. Cameron, J. Crouzet and F. Blanche, J. Bacteriol., 1992, 174, 1043.
- 13 A. Eschenmoser, Angew. Chem., Int. Ed. Engl., 1988, 27, 5.